
TypeScript

Cheat Sheet

Key points Full name is “type alias” and are used
to provide names to type literals

Supports more rich type-system
features than interfaces.

These features are great for building libraries, describing existing
JavaScript code and you may find you rarely reach for them in
mostly TypeScript applications.

^ Interfaces can only describe
object shapel

^ Interfaces can be extended by

^ s
interface comparison checks
can be faster.

Much like how you can create
variables with the same name in
different scopes, a type has
similar semantics.

TypeScript includes a lot of
global types which will help you
do common tasks in the type
system. Check the site for them.

A tuple is a special-cased array with known
types at specific indexes.
A tuple is a special-cased array with known
types at specific indexes.

Terser for saving space, see Interface Cheat Sheet for
more info, everything but ‘static’ matches.

Type
Type vs Interface

Think of Types Like Variables

Build with Utility Types

type JSONResponse = {

 : number;

 : number;

 ?: boolean;

 : (retryTimes: number) => void;

 (retryTimes: number): void;

 (): JSONResponse

 [: string]: number;

 new (s: string): JSONResponse;

 readonly : string;

}

version

payloadSize

outOfStock

update

update

key

body

/** In bytes */

// Field

// Attached docs

//

// Optional

// Arrow func field

// Function

// Type is callable

// Accepts any index

// Newable

// Readonly property

Object Literal Syntax

Union TypePrimitive Type

Object Literal Type

Tuple Type

Type from Value

Type from Func Return

Type from Module

Intersection Types

Type Indexing

Conditional Types

Template Union Types

Mapped Types

Describes a type which is one of many options,
for example a list of known strings.

Useful for documentation mainly Re-use the type from an existing JavaScript
runtime value via the typeof operator.

Re-use the return value from a
function as a type.

A way to merge/extend types

A way to extract and name from

a subset of a type.

Acts as “if statements” inside the type system. Created
via generics, and then commonly used to reduce the
number of options in a type union.

A template string can be used to combine and
manipulate text inside the type system.

Acts like a map statement for the type system, allowing
an input type to change the structure of the new type.

type Size =

| | "small" "medium" "large"

const

type typeof

 data = { ... }

 Data = data

const

type

typeof

function

 createFixtures = () => { ... }

 Fixtures =

 ReturnType< createFixtures>

 test(fixture: Fixtures) {}

const data: import().data"./data"

type Location =

 { x: number } & { y: number }

// { x: number, y: number }

type

type

Response = { data: { ... } }

 Data = Response[]
"data"

// { ... }

type

 extends

 never

type

type

HasFourLegs<Animal> =

Animal { : 4 } ? Animal

:

Animals = Bird | Dog | Ant | Wolf;

FourLegs = HasFourLegs<Animals>

legs

// Dog | Wolf

type | ;

type | ;

type

 ${ ${ } ;

SupportedLangs =

FooterLocaleIDs =

AllLocaleIDs =

SupportedLangs} FooterLocaleIDs

"en" "pt" | "zh"

"header" "footer"

` _ _id`

// "en_header_id" | "en_footer_id"

 | "pt_header_id" | "pt_footer_id"

 | "zh_header_id" | "zh_footer_id"

type

type

in

type

Artist = { name: string, bio: string }

Subscriber<Type> = {

 [Property keyof Type]:

 (newValue: Type[Property]) => void

}

 ArtistSub = Subscriber<Artist>

// { name: (nv: string) => void,

// bio: (nv: string) => void }

Loop through each field
in the type generic
parameter “Type”

Sets type as a function with
original type as param

type Data = [

 location: Location,

 timestamp: string

];

type Location = {

 x: number;

 y: number;

};

type

type

 SanitizedInput = string;

 MissingNo = 404;

declaring it multiple times

TypeScript

Cheat Sheet

Key points

Used to describe the shape of
objects, and can be extended by
others.

Almost everything in JavaScript is
an object and interface is built
to match their runtime behavior.

Almost everything in JavaScript is
an object and interface is built
to match their runtime behavior.

Interface interface

 new

 JSONResponse extends Response, HTTPAble {

 : number;

 : number;

 ?: boolean;

 : (retryTimes: number) => void;

 (retryTimes: number): void;

 (): JSONResponse

(s: string): JSONResponse;

 [: string]: number;

 readonly body: string;

}

version

payloadSize

outOfStock

update

update

key

/** In bytes */

Common Syntax

Date, Error, Array, Map,
Set, Regexp, Promise

boolean, string, number,
undefined, null, any,
unknown, never, void,
bigint, symbol

Object:

{ field: string } 

Function:

(arg: number) => string

Arrays:

string[] or Array<string>

Tuple:

[string, number]

Object, String, Number, Boolean

Optionally take properties from
existing interface or type

This property might not be on the object

JSDoc comment attached to show in editors

These are two ways to describe a
property which is a function

You can call this object via () - (functions
in JS are objects which can be called)

Any property not described already is assumed
to exist, and all properties must be numbers

You can use new on the object
this interface describes

Tells TypeScript that a property
can not be changed

Common Built-in JS Objects

Built-in Type Primitives

Type Literals

Avoid

interface Ruler {

 get size(): number

 set size(value: number | string);

}

const r: Ruler = ...

r.size = 12

r.size = "36"

Get & Set

Usage

Objects can have custom getters or setters

interface

interface

 APICall {

 data: Response

}

 APICall {

 error?: Error

}

interface

class implements

 Syncable { sync(): void }

 Account Syncable { ... }

Extension via merging

Class conformance

Interfaces are merged, so multiple declarations will
add new fields to the type definition.

interface Expect {

 (matcher: boolean): string

 (matcher: string): boolean;

}

Overloads

A callable interface can have multiple definitions

for different sets of parameters

interface APICall<Response> {

 data: Response

}

interface APICall<Response extends { status: number }> {

 data: Response

}

Generics

Usage

const api: APICall<ArtworkCall> = ...

api.data // Artwork

const api: APICall<ArtworkCall> = ...

api.data.status

Usage

Type parameter

Sets a constraint on the type
which means only types with a
‘status’ property can be used

Used here

Declare a type which can change in your interface

You can constrain what types are accepted into the generic
parameter via the extends keyword.

You can ensure a class conforms to an interface via implements:

TypeScript

Cheat Sheet

Key points

CFA nearly always takes a union
and reduces the number of
types inside the union based on
logic in your code.

A function with a return type describing the CFA
change for a new scope when it is true.

A function describing CFA changes affecting the current
scope, because it throws instead of returning false.

Most of the time CFA works
inside natural JavaScript
boolean logic, but there are
ways to define your own
functions which affect how
TypeScript narrows types.

Most narrowing comes from expressions inside if statements,
where different type operators narrow inside the new scopeControl

Flow

Analysis

const input = getUserInput()

input

if (typeof input === “string”) {

 input
}

 // string | number

// string

const input = getUserInput()

input

if (input instanceof Array) {

 input
}

 // number | number[]

// number[]

const input = getUserInput()

input

if (Array.isArray(input)) {

 input
}

// number | number[]

// number[]

const input = getUserInput()

input

if (“error” in input) {

 input
}

// string | { error: ... }

// { error: ... }

If Statements

typeof (for primitives) (for objects)

 (for classes) (for anything)instanceof type-guard functions

“property” in object

type Responses =

 | { status: 200, data: any }

 | { status: 301, to: string }

 | { status: 400, error: Error }

function assertResponse(obj: any): asserts obj is SuccessResponse {

 if (!(obj instanceof SuccessResponse)) {

 throw new Error(“Not a success!”)

 }

}

const response = getResponse()

response

switch(response.status) {

 case 200: return response.data

 case 301: return redirect(response.to)

 case 400: return response.error

}

// Responses

const res = getResponse()
res

assertResponse(res)

res

:

// SuccessResponse | ErrorResponse

// SuccessResponse

All members of the union have the same
property name, CFA can discriminate on that.

Assertion functions change
the current scope or throw

Discriminated Unions

Assertion Functions

Narrowing also occurs on the same line as code, when
doing boolean operations

const input = getUserInput()
input

const inputLength =

 (typeof input === "string" && input.length) || input

 // string | number

 // input: string

Expressions

Usage

Usage

Type Guards

function isErrorResponse(obj: Response): obj is APIErrorResponse {

 return obj instanceof APIErrorResponse

}

const response = getResponse()

response

if (isErrorResponse(response)) {

response

}

// Response | APIErrorResponse

 // APIErrorResponse

Usage

Subfields in objects are treated as though they can
be mutated, and during assignment the type will be
‘widened’ to a non-literal version. The prefix ‘as
const’ locks all types to their literal versions.

let data: string | number = ...

data
data = "Hello"

data

// string | number

 // string

Re-assignment updates types

const response = getResponse()

const isSuccessResponse

 = res instanceof SuccessResponse 

if (isSuccessResponse)

 res.data // SuccessResponse

const data1 = {

 name:
}

"Zagreus"

const

as const

 data2 = {

 name:
}

"Zagreus"

typeof data1 = {

 name: string

}

typeof data2 = {

 name: "Zagreus"

}

Tracks through related variables

Narrowing types using ‘as const’

Assignment

Return type position describes
what the assertion is

TypeScript

Cheat Sheet

Key points A TypeScript class has a few type-specific extensions to ES2015 JavaScript
classes, and one or two runtime additions.

Parameters to the new ABC come
from the constructor function.

The prefix private is a type-only
addition, and has no effect at
runtime. Code outside of the class
can reach into the item in the
following case:

Vs #private which is runtime
private and has enforcement
inside the JavaScript engine that it
is only accessible inside the class:

The value of ‘this’ inside a function
depends on how the function is
called. It is not guaranteed to
always be the class instance which
you may be used to in other
languages.

You can use ‘this parameters’, use
the bind function, or arrow
functions to work around the issue
when it occurs.

Surprise, a class can be used as
both a type or a value.

So, be careful to not do this:

Class

class ABC { ... }

 abc = new ABC()const

class

private

 item

Bag {

: any

}

class #itemBag { : any }

const a:Bag = new Bag()

class C implements Bag {}

Creating an class instance

private x vs #private

‘this’ in classes

Type and Value

class extends implements

get

set

private

protected

static

static

static

 User Account {

 : string;

?: boolean;

: string;

: Map<any, any>;

 = [];

 = new Date()

 (id: , email:) {

 super(id);

 .email = email;

 ...

 };

 (name: string) { this.name = name }

 (name: string) => { ... }

 (): Promise<{ ... }>

 (cb: ((result: string) => void)): void

 (cb?: ((result: string) => void)): void | Promise<{ ... }> { ... }

 accountID() { }

 accountID(value: string) { }

 () { ... }

 () { ... }

 #userCount = 0;

 registerUser(user: User) { ... }

 { this.#userCount = -1 }

}

Updatable Serializable

"user"

string string

,

id

setName

verifyName =

 displayName

 name!

 #attributes

roles

readonly createdAt

constructor

sync

sync

sync

makeRequest

handleRequest

this

// A field

// An optional field

// A ‘trust me, it’s there’ field

// A private field

// A field with a default

// A readonly field with a default

Common Syntax Subclasses this class

Ensures that the class

conforms to a set of
interfaces or types

The code called on ‘new’

In this code is checked against
the fields to ensure it is set up correctly

strict: true

Type Value

Ways to describe class
methods (and arrow
function fields)

Private access is just to this class, protected
allows to subclasses. Only used for type
checking, public is the default.

Static fields / methods

Static blocks for setting up static
vars. ‘this’ refers to the static class

A function with 2
overload definitions

Getters and setters

abstract class

abstract

 Animal {

 getName(): string;

 () {

 console.log(+ this.getName());

 }

}

printName

"Hello, "

class extends Dog Animal { getName(): { ... } }

Abstract Classes

A class can be declared as not implementable, but as existing to
be subclassed in the type system. As can members of the class.

import

 from

class

{

 Syncable, triggersSync, preferCache, required

}

@

User {

 @ ()

 () { ... }

 @ (false)

 get displayName() { ... }

 (@ info: Partial<User>) { ... }

}

"mylib"

Syncable

triggersSync

preferCache

required

save

update

Decorators and Attributes

You can use decorators on classes, class methods, accessors, property and
parameters to methods.

class Location {

 (public x: number, public y: number) {}

}

 loc = new Location(20, 40);

loc.x

loc.y

constructor

const

// 20

// 40

Parameter Properties

A TypeScript specific extension to classes which
automatically set an instance field to the input parameter.

Generics
Declare a type which can
change in your class
methods.

class

const

 Box< > {

 : Type

 (value:) {

 this.contents = value;

 }

}

 stringBox = new Box()

Type

Type

"a package"

contents

constructor

Class type parameter

Used here

These features are TypeScript specific language extensions which may
never make it to JavaScript with the current syntax.

